4,948 research outputs found

    Digital Repertoires: Non-State Actors and ICTs

    Get PDF
    In this paper we explore the usage of information communication technologies (ICTs) in the proliferation of non-state political violence, and governmental countermeasures to thwart such actions. We are specifically interested in gauging how communication technologies are being adapted to provide such non-state with new terrorist repertoires. To explore this issue, we utilize personal interviews with members of the U.S. government and members of Washington’s IT security community

    Simulating multiple merger pathways to the central kinematics of early-type galaxies

    Full text link
    Two-dimensional integral field surveys such as ATLAS^3D are producing rich observational data sets yielding insights into galaxy formation. These new kinematic observations have highlighted the need to understand the evolutionary mechanisms leading to a spectrum of fast-rotators and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamical simulations sampling idealized galaxy merger scenarios constructed from model spiral galaxies. Idealized and controlled simulations of this sort complement the more 'realistic' cosmological simulations by isolating and analyzing the effects of specific parameters, as we do in this paper. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericenter, orbital ellipticity, and spin with remnant kinematic properties. We create kinematic profiles of these 95 simulations comparable to ATLAS^3D data. By constructing remnant profiles of the projected specific angular momentum (lambda_R = / , triaxiality, and measuring the incidences of kinematic twists and kinematically decoupled cores, we distinguish between varying formation scenarios. We find that binary mergers nearly always form fast rotators. Slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers, but are not as round as the ATLAS^3D galaxies. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS^3D rotators.Comment: MNRAS, in press, 12 pages, 15 figure

    Site Characterization Using Integrated Imaging Analysis Methods on Satellite Data of the Islamabad, Pakistan, Region

    Get PDF
    We develop an integrated digital imaging analysis approach to produce a first-approximation site characterization map for Islamabad, Pakistan, based on remote-sensing data. We apply both pixel-based and object-oriented digital imaging analysis methods to characterize detailed (1:50,000) geomorphology and geology from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. We use stereo-correlated relative digital elevation models (rDEMs) derived from ASTER data, as well as spectra in the visible near-infrared (VNIR) to thermal infrared (TIR) domains. The resulting geomorphic units in the study area are classified as mountain (including the Margala Hills and the Khairi Murat Ridge), piedmont, and basin terrain units. The local geologic units are classified as limestone in the Margala Hills and the Khairi Murat Ridge and sandstone rock types for the piedmonts and basins. Shear-wave velocities for these units are assigned in ranges based on established correlations in California. These ranges include Vs30-values to be greater than 500 m/sec for mountain units, 200–600 m/sec for piedmont units, and less than 300 m/sec for basin units. While the resulting map provides the basis for incorporating site response in an assessment of seismic hazard for Islamabad, it also demonstrates the potential use of remote-sensing data for site characterization in regions where only limited conventional mapping has been done

    Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium

    Get PDF
    We use hydrodynamic simulations with detailed, explicit models for stellar feedback to study galaxy mergers. These high-resolution (∼1 pc) simulations follow the formation and destruction of individual giant molecular clouds (GMC) and star clusters. We find that the final starburst is dominated by in situ star formation, fuelled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self-gravitating, and forms massive (≲10¹⁰ M_⊙) GMC and subsequently super star clusters (with masses up to 10⁸ M_⊙). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in super-clusters which then sink to the centre of the galaxy. This is because feedback efficiently disperses GMC after they turn several per cent of their mass into stars. In other words, most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt–Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from infrared photons, extend, with no fine-tuning, over seven decades in star formation rate (SFR) to regulate star formation in the most extreme starburst systems with densities ≳10⁴ M_⊙ pc⁻². This feedback also drives super-winds with large mass-loss rates; however, a significant fraction of the wind material falls back on to the discs at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. This suggests that strong active galactic nucleus feedback may be required to explain the sharp cut-offs in SFR that are observed in post-merger galaxies. We compare the results to those from simulations with no explicit resolution of GMC or feedback [‘effective equation-of-state’ (EOS) models]. We find that global galaxy properties are similar between EOS and resolved-feedback models. The relic structure and mass profile, and the total mass of stars formed in the nuclear starburst are quite similar, as is the morphological structure during and after mergers (tails, bridges, etc.). Disc survival in sufficiently gas rich mergers is similar in the two cases, and the new models follow the same scalings as derived for the efficiency of disc re-formation after a merger as derived from previous work with the simplified EOS models. While the global galaxy properties are similar between EOS and feedback models, subgalaxy-scale properties and the SFRs can be quite different: the more detailed models exhibit significantly higher star formation in tails and bridges (especially in shocks), and allow us to resolve the formation of super star clusters. In the new models, the star formation is more strongly time-variable and drops more sharply between close passages. The instantaneous burst enhancement can be higher or lower, depending on the details of the orbit and initial structural properties of the galaxies; first-passage bursts are more sensitive to these details than those at the final coalescence

    A survey of diffuse interstellar bands in the Andromeda galaxy: optical spectroscopy of M31 OB stars

    Full text link
    We present the largest sample to-date of intermediate-resolution blue-to-red optical spectra of B-type supergiants in M31 and undertake the first survey of diffuse interstellar bands (DIBs) in this galaxy. Spectral classifications, radial velocities and interstellar reddenings are presented for 34 stars in three regions of M31. Radial velocities and equivalent widths are given for the 5780 and 6283 DIBs towards 11 stars. Equivalent widths are also presented for the following DIBs detected in three sightlines in M31: 4428, 5705, 5780, 5797, 6203, 6269, 6283, 6379, 6613, 6660, and 6993. All of these M31 DIB carriers reside in clouds at radial velocities matching those of interstellar Na I and/or H I. The relationships between DIB equivalent widths and reddening (E(B-V)) are consistent with those observed in the local ISM of the Milky Way. Many of the observed sightlines show DIB strengths (per unit reddening) which lie at the upper end of the range of Galactic values. DIB strengths per unit reddening are found (with 68% confidence), to correlate with the interstellar UV radiation field strength. The strongest DIBs are observed where the interstellar UV flux is lowest. The mean Spitzer 8/24 micron emission ratio in our three fields is slightly lower than that measured in the Milky Way, but we identify no correlation between this ratio and the DIB strengths in M31. Interstellar oxygen abundances derived from the spectra of three M31 H II regions in one of the fields indicate that the average metallicity of the ISM in that region is 12 + log[O/H] = 8.54 +- 0.18, which is approximately equal to the value in the solar neighbourhood

    Submillimetre galaxies in a hierarchical universe: number counts, redshift distribution and implications for the IMF

    Get PDF
    High-redshift submillimetre galaxies (SMGs) are some of the most rapidly star-forming galaxies in the Universe. Historically, galaxy formation models have had difficulty explaining the observed number counts of SMGs. We combine a semi-empirical model with 3D hydrodynamical simulations and 3D dust radiative transfer to predict the number counts of unlensed SMGs. Because the stellar mass functions, gas and dust masses, and sizes of our galaxies are constrained to match observations, we can isolate uncertainties related to the dynamical evolution of galaxy mergers and the dust radiative transfer. The number counts and redshift distributions predicted by our model agree well with observations. Isolated disc galaxies dominate the faint (S_(1.1) ≲ 1 or S_(850) ≲ 2 mJy) population. The brighter sources are a mix of merger-induced starbursts and galaxy-pair SMGs; the latter subpopulation accounts for ∼30–50 per cent of all SMGs at all S_(1.1) ≳ 0.5 mJy (S_(850) ≳ 1 mJy). The mean redshifts are ∼3.0–3.5, depending on the flux cut, and the brightest sources tend to be at higher redshifts. Because the galaxy-pair SMGs will be resolved into multiple fainter sources by the Atacama Large Millimeter/submillimeter Array (ALMA), the bright ALMA counts should be as much as two times less than those observed using single-dish telescopes. The agreement between our model, which uses a Kroupa initial mass function (IMF), and observations suggests that the IMF in high-redshift starbursts need not be top heavy; if the IMF were top heavy, our model would overpredict the number counts. We conclude that the difficulty some models have reproducing the observed SMG counts is likely indicative of more general problems – such as an underprediction of the abundance of massive galaxies or a star formation rate and stellar mass relation normalization lower than that observed – rather than a problem specific to the SMG population

    A Molecular Einstein Ring at z=4.12: Imaging the Dynamics of a Quasar Host Galaxy Through a Cosmic Lens

    Get PDF
    We present high-resolution (0.3") Very Large Array (VLA) imaging of the molecular gas in the host galaxy of the high redshift quasar PSS J2322+1944 (z=4.12). These observations confirm that the molecular gas (CO) in the host galaxy of this quasar is lensed into a full Einstein ring, and reveal the internal dynamics of the molecular gas in this system. The ring has a diameter of ~1.5", and thus is sampled over ~20 resolution elements by our observations. Through a model-based lens inversion, we recover the velocity gradient of the molecular reservoir in the quasar host galaxy of PSS J2322+1944. The Einstein ring lens configuration enables us to zoom in on the emission and to resolve scales down to ~1 kpc. From the model-reconstructed source, we find that the molecular gas is distributed on a scale of 5 kpc, and has a total mass of M(H2)=1.7 x 10^10 M_sun. A basic estimate of the dynamical mass gives M_dyn = 4.4 x 10^10 (sin i)^-2 M_sun, that is, only ~2.5 times the molecular gas mass, and ~30 times the black hole mass (assuming that the dynamical structure is highly inclined). The lens configuration also allows us to tie the optical emission to the molecular gas emission, which suggests that the active galactic nucleus (AGN) does reside within, but not close to the center of the molecular reservoir. Together with the (at least partially) disturbed structure of the CO, this suggests that the system is interacting. Such an interaction, possibly caused by a major `wet' merger, may be responsible for both feeding the quasar and fueling the massive starburst of 680 M_sun/yr in this system, in agreement with recently suggested scenarios of quasar activity and galaxy assembly in the early universe.Comment: 9 pages, 7 figures, to appear in ApJ (accepted June 27, 2008
    corecore